
ELASTIC INSTABILITY OF MULITILAYER FILMS  
COATED ON SUBSTRATES* 

 
Shu Guo, Martin Y.M. Chiang, Christopher M. Stafford 

Polymers Division, National Institute of Standards and Technology Gaithersburg, Maryland 20899 
Shu.guo@nist.gov 

 
 

Introduction 
 

Mechanical properties of ultra-thin (submicrometer) 
films coated on a substrate are paramount in many applica-
tions [1-4].  One question arises as to whether the physical 
and mechanical properties of supported thin films in appli-
cations can be significantly different from the properties of 
chemically identical bulk materials. There have been many 
methods developed to measure these properties of thin 
films for the purpose of understanding the relation between 
the microstructure and behavior of material in the bulk and 
material in thin films coated on a substrate. The basic con-
cept among them is that these properties can be deduced 
from the response of a film/substrate system perturbed 
either mechanically, thermally, acoustically, or optically [ 
5-17]. In some specialty or common applications, multi-
layer material system has been developed to meet the in-
creasingly demanding cost and performance requirements. 
Therefore, we present here a theoretical analysis for the 
structural stability of a multilayer system on an elastic me-
dium.  Ultimately, rather than a single layer system re-
ported in the literature [18-20], this stability analysis could 
facilitate the development of a measurement technique for 
deducing the mechanical properties of each constituent 
layer in a multilayer system. Also, the finite element 
analysis (FEA) has been performed on the multilayer sys-
tem to clarify the assumptions used and validate the results 
in the theoretical analysis. 
 

Method 
 
We Adopt classic laminate theory [19] (CLT) to calculate 
the wavelength of a laminated multilayer.  Figure 1 shows 
the schematic of a laminate.  The constitutive relationship 
of a laminated multilayer can be written as 
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where N and M are the force and moment vectors acting on 
the laminate, ε and κ are the strain and curvature vectors.  
A, B and D are the extension stiffness, bending-extension 
coupling stiffness and bending stiffness matrices, respec-
tively.  They are related to the laminate stiffness matrix, Q, 
via 
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where zk denotes the axis coordinate perpendicular to the 
plate for each layer as shown in Figure 1.  n is the number 
of layers, index i, j=1~6.  The terms of Q for each isotropic 
layer are given by 
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where Ek and νk denotes the modulus and Poisson’s ratio 
of kth  layer.  The equilibrium equations for each layer can 
be expressed as follows 
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and compatibility equation is: 
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Eqn. 1 can be rewritten as 
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where matrices a, b, and d is given by 
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For cylindrical bending, ( ),y=0.  If the elastic medium is 



assumed as an elastic foundation, the final governing equa-
tion for an isotropic multilayer with cylindrical bending 
can be obtained as follows 
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where F is the compression force, k the foundation 
modulus of the substrate.  If the substrate is treated as a 
Winkler foundation, the foundation modulus is given by 
[19] 
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where Es and νs are the modulus and Poisson’s ratio of the 
substrate respectively, w is the width of the film and 
λ wavelength.  Assume a sinusoidal buckled shape: 
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where A is the magnitude of the buckled shape.  The com-
pressive force, F, can be found by substituting (11) and 
(10) into (9).  F has a minimum value at some wavelength, 
which can be express as follows 
 

( )3
22

2

1122
2

12
12

s

s

Ea
dab νπλ −

+=   (12) 

 
Discussion 

 
 Finite element analysis was conducted to verify the 
analytical calculation introduced in the proceeding section.  
Plane strain quadratic isoparametric elements were used to 
model the films and elastic medium.  Eigen value buckling 
analysis was activated to obtain the buckled shape of the 
beam.  Figure 2 illustrates the schematic of the model.  A 
film consisting of two layers of same thickness was em-
bedded on an elastic substrate.  Figure 3 shows relation-
ship between the wavelength and modulus ratio for the two 
layers.  A perfect agreement between analytical solution 
(12) and FEA results is observed. 
 

Conclusions 
 

 In this presentation, an analytical solution based on 
CLT was developed to describe the instability of multi-
layer thin film supported by an elastic media.  A perfect 
agreement was observed between FEA simulation and this 
solution.  This solution can be applied to the buckling-
based metrology for measuring the modulus of an ultra 
thin film, in which a multilayer thin film structures is in-
volved.  

 
* Contribution of the National Institute of Standards and 
Technology, not subject to copyright in the United States. 
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Figure 1.  Cross-section of a laminate 
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Figure 2.  Schematic of the FEA model. 
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Figure 3.  Wavelength as a function of the modulus ratio 

between two layers. 
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